
Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 1 of 21

Compiler Wrapper for QAC/QAC++

Version 3.1

Author: Jason Masters
Version: 3.1
Created Date: 15 March 2010
Last Modified: 17 September 2010
Number of Pages: 21

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 2 of 21

Contents

1 INTRODUCTION...3

2 INSTALLATION ..3

3 OVERVIEW ..3

4 USAGE ...4

4.1 COMPILER WRAPPING..4
4.2 PROJECT CREATION ...5
4.3 ANALYSIS ON A REMOTE MACHINE...6

5 CONFIGURATION FILE..7

5.1 MANDATORY CONFIGURATION OPTIONS...8
5.2 OPTIONAL CONFIGURATION OPTIONS..8
5.3 ENVIRONMENT VARIABLES IN CONFIGURATION OPTIONS ...16

6 EXAMPLE WRAPPER CONFIGURATION FILE ...16

7 NOTES ON USAGE OF WRAPPER ON WINDOWS ...18

8 CHANGE HISTORY..18

8.1 VERSION 2.4 ..18
8.2 VERSION 2.5 ..19
8.3 VERSION 2.6 ..19
8.4 VERSION 2.7.1 ...19
8.5 VERSION 2.8-BETA ..19
8.6 VERSION 3.0 ..20
8.7 VERSION 3.1 ..20

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 3 of 21

1 Introduction
This document describes the operation of the compiler wrapper for QAC and QAC++.

The wrapper can be used with command line versions of either QAC or QAC++ on either
Windows or UNIX.

2 Installation
Wrapper does not have an installation program or script: simply untar or unzip the package.
The Windows and UNIX packages contain some different files: the following table describes
the files within the package.

File Package Purpose

CompilerWrapper.pdf Both Documentation

wrapper.pl Both Wrapper script

wrapper.exe Windows Wrapper executable

iso.c

iso.cpp

Both ISO standard test files that can be used to
check Wrapper is working

wrapper_pc.cfg Windows Sample Wrapper Configuration file

wrapper_unix.cfg UNIX Sample Wrapper Configuration file

create_project_back_end.exe Windows Project creator program

create_project.options.personalities

qaw.options

qaw.options.properties

Windows Contain information on all analysis
options, how they can be used and which
personality they apply to. Used by Project
creator to assemble the analyser
personality. These files must be saved in
the same directory as
create_project_back_end.exe

The Wrapper script and executables may be saved anywhere.

3 Overview
The wrapper is a utility that can be used alongside your compiler in order to perform the
function of both analysis and compilation. Wrapper can also be used to create a Windows
GUI project from a set of compilation instructions. Analysis is performed by either QAC or
QAC++, and compilation is performed by the compiler as before. The command line passed
to the wrapper is passed on to the compiler when invoking compilation.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 4 of 21

Let us consider the use of the wrapper in a simple makefile.

This makefile is used to compile a “hello world” C program:-

.c.o:

 $(CC) –c $<

hello_world: hello_world.o

 $(CC) –o $@ $<

On Unix systems, we could use the wrapper by executing

make CC=”wrapper.pl –wcf wrapper.cfg gcc”

This will replace the original compilation with a two step process of analysis and
compilation. When the wrapper invokes the compiler, it extracts from the command line
parameters any –D and –I options that need to be passed on to the analyser (QAC or
QAC++).

On Windows, use wrapper.exe instead of wrapper.pl.

The behaviour of the wrapper is configured by configuration files which are passed to the
wrapper script using the –wcf flag.

4 Usage

4.1 Compiler Wrapping

The wrapper expects the following options

wrapper.pl <–wcf file1.cfg> [[–wcf file2.cfg] [–wcf file3.cfg] ...] <compiler>

<compiler command line>

The contents of each config file is described in section 5.

Typical usage might be.

wrapper.pl –wcf qac_5.0.1.cfg –wcf gcc3.2.3.cfg –wcf sniff.cfg –wcf projectX.cfg

gcc –c test.c

In this example, a separate wrapper configuration file has been created to describe settings
prevalent to the analyser, the compiler, the type of integration and project specific coding
standards.

The wrapper can also accept values for any of the configuration options which might be set in
the configuration file. This is achieved by the –set flag, for example:

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 5 of 21

wrapper.pl –set “ANALYSER_FLAGS=-fi force.h” –wcf test.cfg gcc –c test.c

This would set the ANALYSER_FLAGS configuration option to “-fi force.h” before the first
configuration file test.cfg was examined. This is very useful if you wish to pass values which
are determined during the make process to the wrapper.

The wrapper will accept spaces between –wcf and –set flags and their arguments, but these
are optional and can be omitted if your build system will not allow multiple instances of the
same flag to be passed to a compiler-like process.

4.2 Project Creation

Project Creation is currently only available on the Windows Platform.

Project Creation is a two stage process. The first stage is to run the Makefile (and possibly
compilation) to gather the settings that would be used to analyse the files. The second stage is
to process these results to create a GUI project file and appropriate Analyser Personality
settings for all the files that are compiled.

4.2.1 Stage one – Running the Makefile

4.2.1.1 Setting the Project Configuration mode

This is set with the ‘MODE’ configuration option in the Wrapper Configuration file.

There are two modes of Project Creation, one where compilation is not performed and one
where compilation is performed.

4.2.1.2 PROJECT_CREATOR_MODE

In this mode Wrapper does not launch the compiler after the analysis options have been
recorded. Using this mode is quickest as no compilation or analysis is performed, the
Makefile can be processed quickly.

4.2.1.3 PROJECT_CREATOR_AND_MAKE_MODE

In this mode Wrapper will record the analysis options and then launch the compiler. This may
be needed for some Makefiles to complete – for example they may manually copy the object
files or build libraries as part of the build process which must exist before continuing the
Makefile.

4.2.1.4 WQP_OUTPUT_DIR

This must be the full path to an existing directory. On Windows this must be a Windows
path, even when running under Cygwin. Wrapper will place the project creation output files
in this directory. These are then used in stage two. Once stage two has been completed, the
files are no longer required and can be deleted.

4.2.1.5 Running Wrapper

Once the creator configuration option has been set Wrapper can be run in the normal way.
Once it has completed there will be a file in the WQP_OUTPUT_DIR called master.wqp and
a number of other .wqp files, based on the source file names.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 6 of 21

4.2.2 Stage Two – Creating the Project

This is done by another program: create_project_back_end.exe. This reads the .wqp files
created in stage one and extracts the settings to create an Analyser Personality for each folder.
If files in the same directory have different settings, then a different Analyser Personality will
be created and the files will be added in a sub folder in the Project File. All the files that
would have been analysed by Wrapper are added to the Project File in appropriate folders.
Note that the Project File does not use relative paths – this can be done by the GUI later.

The project creation needs to be supplied a Compiler Personality so that the files can be
analysed from the GUI. A Message Personality can also be supplied.

If using a compliance module, this can be specified in the Wrapper Configuration file in the
same way as when compiler wrapping. This results in the Analyser Personalities that are
produced having the correct settings for the Compliance Module. Other Post and Secondary
Analysis settings are not transferred to the GUI project.

The command for creating the project is:

create_project_back_end.exe -wqp <path for file listing wqp file locations> -

prjf <path for writing project file> -p_s <path for message personality to be

used> -p_c <path for compiler personality to be used>

The –wqp option is the full path the master.wqp file created in stage one (i.e. the
WQP_OUTPUT_DIR setting, a path separation character and ‘master.wqp’).

The –prjf file is the full path to the name of the project file to create.

-p_s and –p_c specify the Message and Compiler personality that all the folders in the project
will have.

For example:

create_project_back_end.exe -wqp c:/tmp/projx/master.wqp -prjf

c:/work/projx/projx.prj -p_s “C:/Program Files/PRQA/QAC-7.2-

R/personalities/critical.p_s” -p_c “C:/Program Files/PRQA/QAC-7.2-

R/personalities/gcc_v3.0_qac4.5.p_c”

Once this has finished ‘projx.prj’ can be opened in the QAC GUI.

Note that currently during the creation of the Analyser Personalities no checking is made to
see if files in different directories have the same settings – and could therefore use the same
Analysis Personalities. In some cases in may be possible for all the files in a project (even
though in different folders) to use just the one Analyser Personality.

4.3 Analysis on a Remote Machine

This feature is only available for Wrapper running on UNIX platforms.

This feature can be used when development is done on UNIX platform that cannot run QAC
or QAC++ - for example AIX or Free BSD. The Makefile can be run on this development
machine but the analysis commands are run via SSH on a remote machine that can run QAC
and QAC++. For this to work correctly, both machines must have exactly the same view of
the code – which is easily achieved using NFS.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 7 of 21

In this section, the ‘development machine’ refers to the machine where make and Wrapper
are being run (the one that cannot run QAC/QAC++). The machine that the analysis
commands are run on is called the ‘remote machine’ or ‘analysis machine’.

For remote analysis using QAC it is strongly recommended to use QAC version 6.2 or later.
If using previous versions the STOP_ON_FAIL setting will be ignored and analysis will
proceed even if there are any hard errors.

4.3.1 SSH

The remote commands are sent over SSH – but there are many different implementations of
SSH. Wrapper has been tested with OpenSSH - additional configuration may be required for
different implementations. Since Wrapper sends lots of remote commands (at least one per
source file) it is best to set up SSH to work with out entering a password while running the
analysis.

Additionally X11 forwarding should be set up to allow the Message Browser to be run on the
remote machine but be viewed on the development machine.

4.3.2 Wrapper Configuration

The configuration script must be visible on both the development and analysis machine.
Some of the settings now relate to the development machine and some to the analysis
machine: the following list indicates these:

ANALYSER_BASE: must be set to the install location of QAC/QAC++ on the analysis
machine

COMPILER_SETTINGS_FILE: this is set to the compiler personality file on the analysis
machine: it does not have to be visible to the development machine. However, the settings
within this file must apply to the compiler on the development machine. This will probably
require copying of compiler header files to the analysis machine and configuring the
personality to search these paths for compiler headers.

LOGFILE: this is a file on the development machine

The only other setting required is REMOTE_HOST: this should be set to the IP address or
hostname of the analysis machine. Additionally REMOTE_VIEWER_SCRIPT and
REMOTE_MESSAGE_PERSONALITY can be set to make viewing the analysis results
easier.

4.3.3 Operation

Wrapper is run on the development machine in the normal way. The Makefile executes on the
development machine, but when it comes to running the QAC or QAC++ analysis, the
command is executed on the remote machine. This includes primary and any secondary
analysis.

4.3.4 Troubleshooting

There are two failure modes with running remote analysis: the analysis could fail or the
remote command itself could fail. Wrapper will log both types of errors and for analysis
errors the output of QAC or QAC++ will be logged.

5 Configuration File

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 8 of 21

An example configuration file for the wrapper can be found in wrapper.cfg.

The wrapper has three mandatory settings and twenty optional settings.

When multiple configuration files are specified to the wrapper, the last applied settings will
override previous settings with the exception of ANALYSER_FLAGS, ERRDSP_FLAGS
and SECONDARY_ANALYSIS.

If the wrapper is not supplied with the 3 mandatory options it requires to run, it will issue an
error message about missing settings.

5.1 Mandatory Configuration Options

Wrapper must be provided with these settings whether it is being used for compiler wrapping
or project creation.

5.1.1 COMPILER_SETTINGS_FILE

The COMPILER_SETTINGS_FILE contains the path to the compiler personality for the
specified compiler using the specified ANALYSER. On Windows use forward slashes for
the path.

5.1.2 ANALYSER

The ANALYSER should be set to either QAC or QACPP depending on whether the analyser
that you are using is QAC or QAC++.

5.1.3 ANALYSER_BASE

The ANALYSER_BASE setting provides the directory in which the analyser you wish to use
is installed. Do not place a trailing slash on the path. On Windows use forward slashes for
the path. Note it is possible to apply a current environment variable e.g.

ANALYSER_BASE=$(QACPATH)

Or

ANALYSER_BASE=$(QACPPPATH)

5.2 Optional Configuration Options

5.2.1 FILELIST

This setting controls whether an output file containing the names of each analysed file (along
with the location of the output directory) is produced. The filelist should be the name of the
desired filelist file.

It will always be created in the output directory, and contain only the names of analysed files
whose output will be stored in that directory. For Makefiles with a number of output
directories, a number of these filelist files will be created.

The filelist files are used to launch the QAC message browser, or any project wide analysis
and reporting, such as CMA or errsum.

If omitted, no filelist file will be created.

5.2.2 POST_ANALYSIS

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 9 of 21

This setting has been deprecated in favour of the SECONDARY_ANALYSIS option.

If omitted, no post-analysis will take place.

5.2.3 INTEGRATION_TYPE

This setting controls how the results for an analysis are displayed. The values for this are as
follows

• Unset – if INTEGRATION_TYPE is unset then the wrapper will just produce error file
and met files, but won’t generate any output. This is the default value.

• STDERR – produce output to standard error (used for IDE integrations)

• TEXT – produce output to a text file in the output directory. It shall be named the same
as the source file with a .txt suffix.

• HTML - produce output to a html file in the output directory. It shall be named the same
as the source file with a .html suffix.

• You can also combine any of the strings STDERR, TEXT and HTML if you want more
than one output, so STDERR_TEXT_HTML would produce all three.

The output produced can be tailored by altering ERRDSP_FLAGS. For example, the –
format option to errdsp can be used to produce the required output format for an IDE such as
SniFF or visual studio.

Note that the use of STDERR, TEXT and HTML are subject to additional license control and
may not be available to all users.

5.2.4 ANALYSER_FLAGS

ANALYSER_FLAGS can be used for specifying additional command line flags that you
wish to pass to the analyser. For example, you may wish to produce pre-processed output for
further debugging of hard errors.

It is possible to accumulate ANALYSER_FLAGS from multiple configuration files using the
syntax

ANALYSER_FLAGS=$ANALYSER_FLAGS –ppl+ -ppf+

All options in ANALYSER_FLAGS will appear before options from the compile command
and the Compiler Personality. This ANALYSER_FLAGS can be used to specify a substitute
header directory.

If the COMPLIANCE_MODULE option is used then the Analyser Personality for the
Compliance Module ANALYSER_FLAGS will automatically be added as a –via file to
ANALYSER_FLAGS.

5.2.5 ERRDSP_FLAGS

ERRDSP_FLAGS can be used for specifying additional command line flags that you wish to
pass to errdsp. For example, you may wish to add in a message personality as your coding
standard using the –via option, or specify a message format string for a particular IDE.

It is possible to accumulate ERRDSP_FLAGS from multiple configuration files using the
syntax

ERRDSP_FLAGS=$ERRDSP_FLAGS –ppl+ -ppf+

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 10 of 21

Note that the use errdsp is subject to additional license control and may not be available to all
users.

5.2.6 LOGFILE

LOGFILE if set should contain a path to a log file that will store the status of the operation of
the wrapper. On Windows use forward slashes for the path. If LOGFILE is not set, then
messages are sent to stdout.

5.2.7 DEBUG

If DEBUG is set to 1 then additional debugging information is sent to the LOGFILE or
stdout.

5.2.8 STOP_ON_FAIL

STOP_ON_FAIL controls the behaviour of the wrapper if the initial analysis fails. The
values for this are either 0 or 1.

If STOP_ON_FAIL is set to 0 (the default) then compilation will continue after analysis
regardless of the outcome of the analysis.

If STOP_ON_FAIL is set to 1 then the wrapper will stop if an analysis is not successful. This
can be used if you want to make sure that you can analyse all your files using the wrapper.
By setting STOP_ON_FAIL, a makefile will stop building when it encounters a file that will
not analyse.

5.2.9 SLEEP_AFTER_ANALYSIS

SLEEP_AFTER_ANALYSIS pauses the execution of wrapper after analysis for a specified
time in seconds. This can be used in situations where continual analysis causes overheating of
the CPU.

Allowable values for this are any positive floating point number. For example:

SLEEP_AFTER_ANALYSIS=0.25

will cause wrapper to pause for a quarter of a second after analysis. By default the setting is 0
i.e. no pausing after analysis

5.2.10 OUTPUT_DIR

Typically a Makefile gets the compiler to output the object files in the current directory
alongside the source files, or in a separate ‘object’ directory. This option allows the
QAC/QAC++ analysis output to be sent to a different directory. This can be useful if the
output of different compilations need to be stored, for example a single threaded and multi-
threaded build. The OUTPUT_DIR option specifies a name for the output directory: note this
option only works if you specify an output dir in the compile command. The parameter to
OUTPUT_DIR is the name of the directory to put the analysis output in.

OUTPUT_DIR may be supplied as an absolute path or a relative path.

When supplied as an absolute path, the absolute path provided prefixes the –o path passed to
the compiler by Make. For example:

Supply setting:

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 11 of 21

OUTPUT_DIR=/home/new_output_root

Makefile at /home/build/Makefile does:

$(CC) –c file.cpp –o output/file.o

Then QAC/QAC++ output will appear at:

/home/new_output_root/output/file.err etc.

When OUTPUT_DIR is supplied as a relative path it is added as a suffix to the –o path
passed to the compiler by Make. For example:

Supply setting:

OUTPUT_DIR=../new_output

Makefile at /home/build/Makefile does:

$(CC) –c file.cpp –o output/file.o

Then QAC/QAC++ output will appear at:

/home/build/output/../new_output/file.err etc.

5.2.11 DEFINE_ON_OPTION

This allows specification of defines to be passed to analysis based on compiler options. For
example if you specify –mt (multi-threaded) to a compiler it may implicitly define
_REENTRANT. This define needs to be passed to QAC/QAC++ to make sure the code being
analysed is the same as the code being compiled. DEFINE_ON_OPTION is a space separated
list of compiler options and define pairs. The option and define are separated by a colon. For
example:

DEFINE_ON_OPTION=mt:_REENTRANT

If the compile line has the -mt option, then –D _REENTRANT will be added to the analyser
flags and passed to QAC/QAC++.

5.2.12 INCLUDE_OPTION

By default wrapper assumes that both –i and –I specify include paths. Some compilers do not
support –i. Some compilers have options beginning with –i. Where options begin -i (–
instances=global for example), wrapper extracts the text after –i as an include path, which can
cause problems. The INCLUDE_OPTION sets a regular expression to accept as the option
specifying an include path. The default is ‘[I|i]’, allowing an upper or lower case i. If you
compiler only supports –I, then:

INCLUDE_OPTION=I

will make wrapper accept only –I<path> as the way to specify a search directory.

Another example is:

INCLUDE_OPTION=(i|I|include)

This allows –I, -I and –include to act as the include option, but nothing else.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 12 of 21

Note a space is allowed between option and path.

5.2.13 COMPLIANCE_MODULE

The setting will cause Wrapper to analyse the code to one of the specified Programming
Research Compliance Modules. This is done in two parts: the Analyser Personality of the
Compliance Module is added as a –via file to the ANALYSER_FLAGS setting and the
Secondary Analysis task for the Compliance Module is configured to run as if it were set in
the SECONDARY_ANALYSIS option. Note that when the analysis results are viewed (or
generated with errdsp) then the Compliance Module Message Personality must be used to
give the correct message-to-rule mappings. When using the Message Browser this means
adding a –via to the Message Personality, when using errdsp this means setting the Message
Personality as a –via in ERRDSP_FLAGS.

The following settings are allowed:

Compliance Module Product Setting

MISRA C 1998 QAC mcm

MISRA C:2004 QAC m2cm

High Integrity C++ QAC++ hicppcm

MISRA C++ QAC++ mcppcm

JSF AV C++ QAC++ jcm

By default Wrapper expects to find the Compliance Module installed in the product
installation directory (i.e. $QACPATH or $QACPPPATH). If the compliance module is
installed in a different location then the COMPLIANCE_MODEULE_BASE setting can be
used to tell Wrapper where it is installed. Alternatively a Compliance Module can still be
used but configured manually in the ANALYSER_FLAGS and SECONDARY_ANALYSIS
options)

For example:

COMPLIANCE_MODULE=m2cm

This will analyse the code with the MISRA C:2004 analysis options.

This setting must not appear more than once.

5.2.14 COMPLIANCE_MODULE_BASE

If the selected Compliance Module set in COMPLIANCE_MODULE is not installed in the
product installation directory then this setting is used to tell Wrapper where it is installed. It
must be a full path to the top level directory of the Compliance Module installation.

For example:

COMPLIANCE_MODULE_BASE=/opt/cm/m2cm

The /opt/cm/m2cm directory contains the following subdirectories: bin, doc, message,
personalities, projects.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 13 of 21

Note that Compliance Modules are usually installed against specific versions of QAC or
QAC++ and so are typically installed in the product installation directory, hence this setting
should not normally be needed.

5.2.15 SECONDARY_ANALYSIS

This setting supersedes the POST_ANALYSIS setting. It specifies either a shortcut to PRQA
process or the full path to a custom process to run after the initial analysis by QAC or
QAC++. Options that the processes requires can be added to the setting: Wrapper will
automatically add the output option and directory and source filename to the command line
when launching the process. On Windows when specifying paths it is preferable to use
forward slashes and if the path includes spaces then it must be enclosed in double quotes.

There are two built-in tasks available:

Setting Task Required Options

name_check Name checker – to enforce a naming
convention

-nrf <full path to name rule
file>

baseline Apply the Baseline – run the patch
transform part of the Baseline process. A
Baseline must have been previously
generated

-sf <full path to baseline
suppression> -sop <full path
to working source root
directory>

The product name (QAC or QACPP) is automatically added for these built-in tasks only.

Any task can be specified by using the full path to it, plus any additional parameters:
Wrapper will always add the output path and filename.

This option may appear more than once to specify a sequence of analysis tasks. These will be
performed in the order they appear in the configuration file – this is important as the Baseline
process should be performed last.

For example:

SECONDARY_ANALYSIS=name_check -nrf C:/work/rules/name.nrf

SECONDARY_ANALYSIS=C:/progs/my_check.exe –full

SECONDARY_ANALYSIS=baseline –sf C:/work/baseline/projx/projx.sup –sop

c:/work/projx

This will run the Name Checker using the rules in C:/work/rules/name.nrf and then launch
the custom analysis task like this:

C:/progs/my_check.exe –full –op <output path> <source file>

and then apply the baseline in C:/work/baseline/projx/projx.sup using the copy-source
method.

5.2.16 FILENAME_EXTENSIONS

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 14 of 21

By default Wrapper will only analyse files with a known source file extension to prevent
analysis of object files (where the compiler is used to invoke the linker) or other non-
compilable files (e.g. header files). The default extension list is:

"c", "C", "cc", "CC", "cC", "Cc", "cxx", "CXX", "Cxx", "cXX", "cxX", "cpp", "Cpp", "cPP",
"cpP"

Note that Wrapper itself does not differentiate between C and C++ files.

This setting is used to set a new list of extensions that Wrapper considers to be source files.
Note that the original default list is replaced rather than appended to.

The setting consists of a list of extensions (with or without the period) separated by semi-
colons. Whitespace is permissible around the semi-colons. For example:

FILENAME_EXTENSIONS=.c; .cc

Wrapper will only launch analysis for files that have a .c or .cc extension. Note that any case
differences are handled as the underlying operating system would. In this example on
Windows files with extensions .C and .CC would be analysed as well.

5.2.17 NON_COMPILE_OPTIONS

Compilers can be used for purposes other than creating an object file. For example, GCC can
produce a dependency file for a source file or produce pre-processed source. Neither of these
actions result in an object file. Some Makefiles use the compile variable to invoke these
additional processes: normally this would also make Wrapper launch analysis – this could be
incorrect due to incomplete options or cause duplicated analysis.

This setting allows specification of options that the compiler takes which do not produce an
object file. The options must be separated by a space and must not include the character that
specifies it as an option (either a ‘-‘ or a ‘/’).

The default setting is ‘MM’. Using this setting will override this default.

For example, using the GCC compiler:

NON_COMPILE_OPTIONS=M E

If a compile line invokes Wrapper with either ‘-M’ or ‘-E’ as one of the options then Wrapper
would skip analysis and just run the compiler.

5.2.18 LOCK_FILES

This setting can be used to make Wrapper lock any files that may be written when multiple
instances of Wrapper are running concurrently. This can happen when make is given the –j2
option, or on sophisticated build systems using multiple processors/machines. In these cases
the file list specified in FILELIST and the master wqp file in WQP_OUTPUT_DIR could be
accesses by different processes at the same time, leading to corrupt or missing data.

Setting LOCK_FILES=1 will cause Wrapper to exclusively lock these files while writing to
them. Other processes have to wait until the lock is released before they can write to the file.

The default setting is 0 – i.e. no locking.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 15 of 21

5.2.19 Windows Specific Settings

5.2.19.1 MODE

This option sets how Wrapper will operate – in either analysis or project creation mode. The
mode may be set to one of the three following settings:

Setting Action

MAKEFILE_INTEGRATION_MODE Wrapper will launch analysis and
compilation. This is the default mode.

PROJECT_CREATOR_MODE Wrapper will create .wqp files only. No
analysis or compilation will take place. If
this mode is set WQP_OUTPUT_DIR must
also be set.

PROJECT_CREATOR_AND_MAKE_MODE Wrapper will create .wqp files and launch
complication. No analysis will take place. If
this mode is set WQP_OUTPUT_DIR must
also be set.

See section 4.2 for further information on using the project creator modes.

5.2.19.2 WQP_OUTPUT_DIR

This option sets the directory where Wrapper will write the .wqp files during the project
creation stage. The full path must be used and the directory must exist.

5.2.20 Remote Operation (UNIX only) settings

5.2.20.1 REMOTE_HOST

This option enables running the analysis commands on a remote machine. Either the IP
address or hostname of the analysis machine can be used.

5.2.20.2 REMOTE_VIEWER_SCRIPT

This setting will cause Wrapper to write a file that contains the command line to run the
Message Browser on the remote machine in each directory were files are analysed. This
removes the need for working out what the correct remote command should be. This option
should be set to a the name of the file to be produced, for example:

REMOTE_VIEWER_SCRIPT=show_viewer.sh

If the file already exists it will be overwritten. If REMOTE_HOST is not set, this option is
ignored.

5.2.20.3 REMOTE_MESSAGE_PERSONALITY

This option can be set to the Message Personality to be used when opening the Message
Browser from the remote script. If it is not set then no Message Personality is used, so all

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 16 of 21

messages will be shown. If set, it should contain the full path to the Message Personality on
the analysis machine. For example

REMOTE_MESSAGE_PERSONALITY=/usr/local/qac-7.2R/personalities/critical.p_s

If REMOTE_VIEWER_SCRIPT is not set, this option is ignored.

5.3 Environment Variables in Configuration Options

The values which you assign to any of the options can contain any number of environment
variables, which must be of the form $(ENV_VARIABLE). These should be set at the point
at which the wrapper is executed; if they are not set, the wrapper will produce a message.

For example, if you set the environment variable PRQADIR to be the directory path in which
QAC is installed, you would be free to put a line:

ANALYSER_BASE=$(PRQADIR)

in your configuration file. Environment variables can also be used in configuration options
passed by the –set option.

6 Example Wrapper Configuration file
Below is an annotated Wrapper Configuration File showing a possible setup for compiler
wrapping using a Compliance Module with extra checks and using Baseline.

Mandatory Settings

Set compiler personality

COMPILER_SETTINGS_FILE=C:/Progra~1/PRQA/QACPP-2.5/personalities/VC++2005.p_c

Set the product to use

ANALYSER=QACPP

Set the product location: run qacppconf.bat to set the environment

ANALYSER_BASE=$(QACPPPATH)

End Mandaroty Settings

Optional Settings

Use the MISRA C++ Compliance Module

COMPLIANCE_MODULE=mcppm

Also run the namin convention rules

SECONDARY_ANALYSIS=name_check -nrf C:/work/config/name.nrf

And finally apply the baseline using a VCS

SECONDARY_ANALYSIS=baseline –sf C:/work/projx/projx.sup –sop c:/work/projx –sdt

"prqavcs -diff %BT %BF"

Set thresholds for cylomatic complexity and satic path count...

ANALYSER_FLAGS=-thresh STCYC>10 –thresh STPTH>200

...and enforce the source code layout – this setting is cumulative

ANALYSER_FLAGS=-lf C:\work\config\exdented.layout

log extra information to file ...

DEBUG=1

... specified here

LOGFILE=C:/logs/wrapper.log

Halt the analysis if we generate a level 9 message

STOP_ON_FAIL=1

Record the files analysed in a file list

FILELIST=cpp_files

Our Makefile uses G++ to generate preprocesed source

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 17 of 21

NON_COMPILE_OPTIONS=E

Assuming this file was saved as c:/work/config/qacpp_wrap.cfg and wrapper.pl is on the
path, Wrapper can be run with the following command in a Cygwin shell:

$ make clean

$ make CXX=”wrapper.pl –wcf c:/work/config/qacpp_wrap.cfg g++”

If the Makefile and analysis completes without failure the following commands can be used
to create a master file list, run Cross Module Analysis and open the Message Browser with
the MISRA C++ Message Personality (note that in this case this should be configured to
display the metric threshold message and appropriate layout messages):

$ find . –name cpp_files | xargs cat >> all_cpp_files

$ echo “-cmaf c:/work/projx/projx” >> all_cpp_files

$ pal QACPP -list all_cpp_files

$ viewer QACPP –via “C:/Program Files/PRQA/QACPP-

2.5/mcpp/personalities/mcpp.p_s” –list all_cpp_files

Note that usually the –cmaf file option would be directed to the output folder. The master file
list can be used as input for other PRQA tools, for example reports, the generation of a
baseline or for uploading to MIS.

Below is a sample Configuration file for creating a GUI project for the same make project.

Mandatory Settings

Set compiler personality

COMPILER_SETTINGS_FILE=C:/Progra~1/PRQA/QACPP-2.5/personalities/VC++2005.p_c

Set the product to use

ANALYSER=QACPP

Set the product location: run qacppconf.bat to set the environment

ANALYSER_BASE=$(QACPPPATH)

End Mandaroty Settings

Optional Settings

Use the MISRA C++ Compliance Module

COMPLIANCE_MODULE=mcppm

Set thresholds for cylomatic complexity and satic path count...

ANALYSER_FLAGS=-thresh STCYC>10 –thresh STPTH>200

...and enforce the source code layout – this setting is cumulative

ANALYSER_FLAGS=-lf C:\work\config\exdented.layout

Our Makefile uses G++ to generate preprocesed source

NON_COMPILE_OPTIONS=E

Set the mode to just extract the settings

MODE=PROJECT_CREATOR_MODE

Put all the settings files here

WQP_OUTPUT_DIR=C:/config/proj_create

Note that running the Name Checker and Baseline must now be configured from the GUI.

Wrapper can be invoked the same way as for the compiler wrapping example:

$ make clean

$ make CXX=”wrapper.pl –wcf c:/work/config/qacpp_wrap.cfg g++”

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 18 of 21

This will complete more quickly as there will be no analysis or compilation. The project can
then be created with the following command:

$ create_project_back_end.pl –wqp c:/config/proj_create/master.wqp -prjf

c:/work/projx/projx.prj -p_s “C:/Program Files/PRQA/QACPP-

2.5/mcpp/personalities/mcpp.p_s” -p_c “:/Program Files/PRQA/QACPP-

2.5/personalities/VC++2005.p_c”

When the resulting project file c:/work/projx/projx.prj is opened in the QAC++ GUI al; the
files complied in the normal build process will be in the folder structure. The project can be
analysed as normal (see the QAC++ User Guide for information on configuring the Name
Checker and Baselining).

7 Notes on Usage of Wrapper on Windows
In a pure Windows environment wrapper.exe should be used. Where there is a UNIX like
environment under Windows (e.g. Cygwin) then either the PERL script wrapper.pl or the
executable can be used; the PERL script is preferable.

When specifying Window paths, forward slashes are preferable to backslashes (as each
backslash needs to be doubled up to escape it).

Where spaces are used in path names, the whole path name must be enclosed in double
quotes. Using the short path name can sometimes be easier (though be aware that short path
names can still contain spaces).

Windows paths must always be used when configuring options: even if you are running
wrapper.pl in Cygwin, QAC and QAC++ are Windows programs and cannot understand
UNIX paths. Additionally QAC and QAC++ cannot follow symbolic links so paths must be
reachable under Windows and executables like the compiler must be able to be run from
Windows.

8 Change History

8.1 Version 2.4

8.1.1 Change Requests

CR12032 - Wrapper on Windows does not accept absolute include paths. This fix also
correctly maps symbolically linked UNIX style directories to the correct Windows path

CR12033 - Empty -I option to wrapper causes next argument to be ignored. This fix has also
been applied to the –D option.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 19 of 21

CR12034 - Wrapper needs an option to delay between analysing files to prevent CPU
overheating.

CR12036 - Wrapper fails to handle quoted -D options correctly. Macro definitions containing
quotes are interpreted correctly by wrapper for both analysis and passing to the compile
command.

8.2 Version 2.5

8.2.1 Change Requests

CR12501 – Allow analysis output files to go to a different directory to compilation output.
Pass compiler option configurable defines to analysis. Allow specification of the compiler
include directory option.

8.3 Version 2.6

8.3.1 Change Requests

CR12501 – Reworked to allow absolute prefix or relative suffix for OUTPUT_DIR.

CR12840 – Extend wrapper.pl to allow writing of .wqp (wrapper QAC/PP parameter) files
and a log file of all .wqp files written.

8.4 Version 2.7.1

8.4.1 Change Requests

CR 13338 – Quoted include files passed to Wrapper from an executable are now treated
correctly. Files using backslash directory separators are treated correctly on Windows when
using Cygwin.

CR13404 – Wrapper fails to handle DOS paths correctly in @inline files.

8.5 Version 2.8-beta

8.5.1 Change Requests

CR 13483 Insert the ANALYSER_FLAGS before all other command line options (from the
Makefile and Compiler Personality). This means that a substitute header directory can be
specified in the Wrapper Configuration File.

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 20 of 21

8.6 Version 3.0

8.6.1 Change Requests

CR 13479 POST_ANALYSIS programs fail when supplied with options when running
Wrapper as a Native PERL script. Programs are now launched correctly from Wrapper.

CR 12134 Convert file names to Windows paths on Windows. File names in the file list will
now appear as Windows paths when running Wrapper (either the script or the executable) on
Windows to allow the Message Browser and other PRQA tools to read them correctly.

CR 13486 Extend to handle multiple source files per compilation and CR 13223 Handle
more than one source file at a time. Wrapper will now process (i.e. analyse or include in
project creation) all the appropriate files on a compile command.

CR 13224 Write .wqp files in location(s) away from source files. When in project creation
mode Wrapper will put all the temporary .wqp files into a specified directory rather than the
output directory.

CR 13227 Start Multiple Secondary Analysis Tasks in Wrapper. Wrapper can now run more
than one Secondary Analysis task. Secondary Analysis tasks for PRQA Compliance Modules
and processes (i.e. Name Checker and Baseline) can be specified easily.

CR 12192 Pass product to secondary analysis task. This is applicable only to PRQA
Compliance Modules, the Name Checker and Baseline. Custom Secondary Analysis tasks
(that require it) must have this specified in the SECONDARY_ANALYSIS option.

CR 13296 New feature: in PROJECT_CREATOR_MODE, have option to run compilation.
PROJECT_CREATOR_AND_MAKE_MODE will launch compilation after processing the
compiler arguments. This is because some Makefiles need compilation to succeed before
progressing. Note that analysis is not performed.

CR 13309 Require File::Spec::Win32 qualification needed.

CR 13485 Wrapper should be able to analyse files of arbitrary extension. Analysable files
extensions can be specified in a list

CR 13487 Wrapper does not identify gcc's-M as a non-compile option. Options that do not
result in the compiler producing an object file can be specified in a list.

CR 13551 Remove Wrappers dependency on errdsp for QAC. For QAC versions 6.2 and
later the call to errdsp to verify the analysis success has been removed as QAC correctly
reports this in it’s exit code. For previous versions, errdsp is still called. The call to errdsp to
produce the ‘hard error’ list on analysis failure has been removed.

CR 13226 Multiple concurrent analysis fails. This was due to concurrent access to the file
list. Optional file locking has been added for this file and the master wqp file in Project
Creation mode.

8.7 Version 3.1

8.7.1 Change Requests

CR 13666 Add ability to run analysis on a remote host to Wrapper. This is for use on UNIX
development systems where there is no port of QAC or QAC++, for example AIX. The make

Compiler Wrapper for QAC/QAC++ Version 3.1

 Page 21 of 21

command is run on the development system but the analysis is done on a remote UNIX
system that can run QAC and QAC++ (typically Linux).

CR 13689 Wrapper assumes that the qac executable is in the PATH when trying to get
version number. Wrapper now uses the full path to the executable.

