CCT Generator Manual

22 August 2023

(©)2023 Perforce Software

Contents

(1__Installation|
1.1 Windows platform| .

.2

Linux platform| . . .

2 Usage

n1

Command line help|.

2.2 Typical use[.

[2.3 Source language selection|o

2.4 Target framework version|

2.7 CCT destination path|

D8

Compiler hierarchy| .

[2.9 Verbose console output| Lo

[2.10 Current working directoryl

[2.11 Build command . .

[2.12 Compiler command|

[2.12.1 Obtaining the compiler command|

2.12.2 Cygwin support]

[2.12.8 Clang notes|

[2.12.9 Highlec TriCore notes|

[2.12.10 Microchip notes|

[2.12.11 Texas Instruments Code Composer Studio notes|

[2.12.155ystem header paths|.

[2.13 Helix QAC trace log file|

[2.14 Klocwork trace output file]

[2.15 Blacklisting binaries|

Troubleshooting|

[3.1 Generator command line options{.

B2

Environment settings|

B3

Interpreting console output| L

B4

Reporting problems|

1 Installation

Extract the archive in any location.

The generator is a Python script that operates from the command line.

1.1 Windows platform

Run cmd.exe to obtain a command prompt window in which to run the generator. To run
the python script using the Helix QAC python component, use

C:\Perforce\Helix-QAC-(version)\components\python-(version)\python
CCT_Generator.py (options)

A 64-bit compiled version of the python script (CCT_Generator.exe) and 32-bit version
(CCT_Generator32.exe) are provided for convenience.

1.2 Linux platform

Open an xterm window to obtain a command prompt window in which to run the generator.
A wrapper script named CCT_Generator.sh is provided, which searches a Python interpreter
and uses that to run the generator script.

2 Usage

2.1 Command line help

The generator provides a number of command line options to control its behavior. The
following options (short and long from)

-h
--help

print a brief usage message:

usage: CCT_Generator.exe [-h] [-lang {c,cpp}] [-qv QACVERSION] [-o] [-n NAME]
[-op OUTPUTPATH] [-vb]
[-ch {arm,diab,ghs,gnu,iar,renesas,tasking,til}]
[-qtrace [QACTRACE]] [-kwtrace KLOCWORKTRACE]
[-bl [BLACKLIST]] [-c ...] [-b ...]

Generate CCT for compiler command.

optional arguments:
-h, —--help show this help message and exit
-v, —-version show program’s version number and exit
-lang {c,cpp}, --language {c,cpp}
specify source language
-qv VERSION, --qacversion QACVERSION
specify target framework version
-0, —-overwrite overwrite existing CCT
-n NAME, --name NAME CCT name
—-op OUTPUTPATH, --outputpath OUTPUTPATH
CCT destination path
-vb, —-verbose show compiler output on error and keep sync projects
-ch {arm,diab,ghs,gnu,iar,renesas,tasking,ti},
—--hierarchy {arm,diab,ghs,gnu,iar,renesas,tasking,ti}
specify compiler hierarchy
-qtrace [QACTRACE], --qactrace [QACTRACE]
gqacli sync trace log file
-kwtrace KLOCWORKTRACE, --klocworktrace KLOCWORKTRACE
Klocwork kwinject trace output file
-bl [BLACKLIST], --blacklist [BLACKLIST]
blacklist binaries for which CCT generation failed
BLACKLIST times
-cwd CURRENTWORKINGDIRECTORY, --currentworkingdirectory CURRENTWORKINGDIRECTORY
current working directory for build or compiler

command

-C ..., ——command ...
compiler binary and target or language options (must
be specified as final option)

-b ..., --build ... project build command (must be specified as final

option)

2.2 Typical use

All generator options are optional and it has ways to derive values according to the compiler
or build command.

The generator provides options to generate the CCT from log files that contain compiler
commands. See section [2.13 Helix QAC trace log filel and section [2.14 Klocwork trace output]
[filel These options can be used when build integration has already been performed and don't
require passing of commands. For example:

CCT_Generator -qtrace
CCT_Generator -kwtrace kwtrace.log

The generator options for specifying commands are --build and --command. See section[2.11
[Build command| and section [2.12 Compiler command| respectively.

These options must both be specified as final command as all following options will be treated
as compiler options. The command must not be enclosed in quotes. If the compiler binary
path or any option contains spaces, they must be enclosed in quotes. Some examples are
given below.

CCT_Generator -b make clean all

This will generate a CCT for the first compiler command encountered in the Makefile build.
This command will perform a sync of the build command using a special CCT that captures all
compiler commands which will slow down the build considerably. Therefore, the most efficient
way to use this option will be to only remove one object file for a source file and then specify
an incremental build command:

CCT_Generator -b make all

This will then only compile that single source file so that the overhead of build monitoring will
be minimal. Another way to speed up the process is to use blacklisting to not produce CCT's
for binaries that failed previously. See section [2.15 Blacklisting binaries]

When using option --command, it's important that the build command is taken from the build
of the project because there are compiler options that affect CCT settings and the generator
will pick these up. If such options are not specified, the CCT will not be correct which may
result in incorrect analysis of the code. An example of this is GNU option -std for setting the
C/C++ language version. If this is not specified, the CCT will be for the default language
version of the compiler instead of the version specified in the build.

CCT_Generator -c
"C:\\Program Files (x86)\\Renesas Electronics\\CS+\\CC\\CC-RX\\V3.01.00\\bin\\ccrx.exe"
-cpu=rx600 -dbl_size=8

2.3 Source language selection

-lang c
--language cpp

In most cases the source language can be derived from either the compiler name or from the
source file extension when a source file is specified in the compiler command. If not, this
option can be used to specify ¢ for C language and cpp for C++ language.

2.4 Target framework version

The generator will by default generate the CCT in the CCT section of the latest Helix QAC
user data store. This option is only needed to specify a specific version in case a different
version is required, for example:

-qv 2019.1
--qacversion 2.4.0

It also determines the tool version used for build synchronization (option --build, see sec-
tion [2.11 Build command|).

In Helix QAC 2021.2, option -si was added to the qac component for specifying system
include paths. Option —qv will determine whether gac component option -si or -i will be
used for system include paths found by the generator.

Note that on Linux, the old style three digit version numbering must be used. To find this
version use

$ qacli -v

Helix QAC 2019.1

Build: 2.5.0-10131 Apr 15 2019 for Windows 64-bit

Copyright (C) 2019 Programming Research Ltd., a Perforce company

The version is found on the second line, in this case 2.5.0.

2.5 Overwrite CCT

By default the generator will not overwrite existing CCT files or directories and will give a
warning if this would happen. By specifying

-0
—--overwrite

the existing files will be overwritten without warning.

2.6 CCT name

By default, the generator will produce a name for the CCT by combining a number of its
properties to obtain a name that is sufficiently unique in case the CCT is stored in the user
data store.

If the CCT is produced in some other place, the name mangling can result in excessively long
file system paths. This option can be used to provide some other name for the CCT:

-n cct
——name cct

2.7 CCT destination path

By default, the CCT is generated in the Helix QAC user data store, but it is possible to
generate the CCT in any existing location. This can be achieved by specifying the desired
destination path with:

-op my/cct/dir
--outputpath my/cct/dir

If the leaf directory of the specified path does not exist, it will be created.

2.8 Compiler hierarchy

The generator recognizes the usual compiler names used in the compiler command. In case it
is unable to determine the compiler hierarchy, make sure that the compiler executable path has
been specified correctly and is enclosed in double quotes if it contains spaces. The following
option can be used to explicitly specify the hierarchy.

-ch {arm,diab,ghs,gnu,iar,renesas,tasking,ti}
—--hierarchy {arm,diab,ghs,gnu,iar,renesas,tasking,ti}

Note that this option overrides the name recognition of the generator, so must be used only
in case the recognition fails or selects the wrong hierarchy.

2.9 Verbose console output

-vb
—--verbose

With this option the generator also displays compiler command and its standard and error
output for any compiler invocation that fails. See section [3.3 Interpreting console output] It
also shows logging about blacklisting which is explained in section [2.15 Blacklisting binaries|

2.10 Current working directory

-cwd /path/to/build/dir
--currentworkingdirectory ../relative/path/to/build/dir

This option sets the working directory for execution of the build and compiler command.

2.11 Build command

Note: this feature requires Helix QAC 2.4.0 or newer.

Since there are many compiler options that affect analysis configuration, the generator is best
used with information obtained from the build system of the project.

-b <build command>
—--build <build command>

This option will run the provided build command and monitor its execution. Each compiler
command encountered in the build will be processed until a CCT has been generated for the
specified language.

Note that build monitoring can cause a substantial slowdown of the build. Therefore, the most
efficient way to use this option will be to only remove one object file for a source file and then
specify an incremental build command. This will then only compile that single source file so
that the overhead of build monitoring will be minimal. Another way to speed up the process
is to use blacklisting to not produce CCT's for binaries that failed previously. See section
[Blacklisting binaries|

Also note that when specified, this option must be the last option on the command line
since everything following it will be considered part of the compiler command and will not be
processed as option of the generator. The command must not be surrounded by quotes.

2.12 Compiler command

-c <compiler path> {<target option>,<language option>}*
--command <compiler path> {<target option>,<language option>}x

Note that if the compiler executable path contains spaces, the path needs to be enclosed in
double quotes.

This option is similar to ——build but only specifies a single command. The command consists
of the compiler binary and any options affecting target or C/C++ language features.

These options should be taken from the build of the project. The generator filters out options
that may interfere with its operation so that it is possible to provide a complete compilation
command as argument.

The generator also maps compiler options that control certain C(++) language features to
the according QAC(++) parser options.

Note that when specified, this option must be the last option on the command line since
everything following it will be considered part of the compiler command and will not be
processed as option of the generator. The command must not be surrounded by quotes.

2.12.1 Obtaining the compiler command

Note that section [2.13 Helix QAC trace log file| describes a generator option that automates
CCT generation from commands found in a Helix QAC log file. This section remains to explain
the approach.

For Helix QAC 2.4.0 or newer, the process monitor method described before is the most
convenient method to obtain compiler commands.

For earlier versions, it is still possible to use the Helix QAC process monitor to capture compiler
commands. To do this, increase debug level to highest setting

qacli admin --debug-level TRACE

and synchronize the build of the project as explained in the framework manual. After this the
log file which have been created in the app/logs subdirectory of the Helix QAC user data
store and will be named

qaframework_<timestamp>_<process id>.log. This file will contain an entry for every
compiler command detected including all options provided, e.g.

10:23:06.129 9560 QAF.debug: PRQA::QAAPI::QAProcessMonitor::
WindowsProcessMonitor: :Monitor: Command line run:

C:\cygwin64\bin\gcc.exe -DHAVE_CONFIG_H -I. -I.. -I./../h -g
-02 -Wall -funsigned-char -c getopt.c PID(7240) PPID(15280)

so the command to pass in would be

-c C:\cygwin64\bin\gcc.exe -DHAVE_CONFIG_H -I. -I.. -I./../h -g \
-02 -Wall -funsigned-char -c getopt.c

2.12.2 Cygwin support

The generator supports Cygwin in that the compiler path and include paths may be absolute
Cygwin paths. When executed in a Cygwin environment the generator will use cygpath to
convert such paths to Windows paths.

The python script must not be executed using the Cygwin python interpreter, but the python
interpreter that is shipped with Helix QAC can be used to run the python script on Cygwin.
Also, the Windows compiled versions of the generator can be used on Cygwin.

If the compiler depends on the Cygwin DLL, it will be easiest to use the generator in a Cygwin

terminal so that the DLL will be in the path. In case such terminal is not available, extend
the PATH environment variable to include the path where the DLL is located, for instance:

set PATH=C:\cygwin64\bin;PATHY,

2.12.3 Green Hills notes

For Green Hills compilers, which are typically located in a directory named comp_<version>
and named cc<target> for C and cx<target>, for C++ or, for Integrity compilers, ccint<target>
and cxint<target> for C respectively C++, it is required to specify the target option.

For Integrity targets this is the ~bsp=<target> option that also requires an additional
-os_dir=<integrity path> option. Both must be specified in the options of the compiler
command.

For other compilers the -cpu=<target> option must be provided.

Other options that are relevant for C language standard selection are -C99, -c99, -ANSI,
-ansi, —gcc and -gnu99.

Options that are relevant for C++ language standard selection are -=-STD, --std, —-C++11,
-—c++11, --C++14. —--c++14, ——arm, --g++, ——e and --ee

Options relevant for C++ library support are —-stdl, --stdle, -eel, —-—eele, —-el and
—--ele.

If any of these options are used in the build of the project, they need to be passed to the
generator.

2.12.4 ARMCC notes

The compiler is named armcc. The generator works for compilers developed by ARM and Keil
(ARM acquired Keil Software in 2005). Recent ARM compilers are based on Clang, which is
supported as part of the GNU support of the generator. See section [2.12.8 Clang notes|

Note that there are many other compilers from other vendors for ARM targets. The generator
works for many of those too and will use the name of the compiler to select the appropriate
compiler hierarchy. In case of doubt, run the generator without specifying a compiler hierarchy.

The --cpu=<target> option must be provided to specify the target architecture.

The generator uses the —J compiler option, ARMINC environment variables and registry settings
in that order to determine the system header file paths.

The options for setting language standard are --c90, --c99, --cpp and --cpp11.

2.12.5 Diab notes

The generator supports Wind River Diab compilers. They are typically named dcc for C and
dplus for C++ and use the -t<tof :env> option for target configuration where

e t is the target processor

e o is the object file format
e f is the floating point support

e env is the execution environment

For command line operation, there is the wrenv utility which has option -p for specifying the
platform name. The platform name can be found in the .wrproject file which will have a
line like this:

<properties platform="Standalone" platform_name="standalone-6.06"

In this case the platform name is standalone-6.06 and the generator should be invoked as
follows:

wrenv -p standalone-6.06 CCT_Generator ...

2.12.6 GNU notes

This generator is intended for use with any GNU based compiler, including cross compilers.
GNU cross compiler use the following naming convention arch-vendor-(os-)abi where

arch is for architecture: e.g. arm, mips, x86, i686.

vendor is tool chain supplier: e.g. apple, Codesourcery, Linux.

os is for operating system: e.g. linux, none (bare metal),

abi is for application binary interface convention: e.g. elf, eabi, gnueabi, gnueabihf.
Options which are known to affect compiler settings are:

e —std=<lang>: sets the source language standard.

e -fsigned-char / -funsigned-char: sets char behavior (only used for C).

GNU based compilers allow specification of system include paths (i.e. paths that are searched
for #include <...> directives) using option -isystem. These options will be picked up
by the generator and reflected in the system include paths of the generated CCT. See also
section [2.12.15 System header paths| for more details about this. Note that other include
options such as -I and -iquote are considered project include paths which are already picked
up by Helix QAC project population methods and are for that reason ignored by the generator.

10

2.12.7 QNX notes

Since QNX compilers are based on GNU, the generator supports them using its GNU support.
See section [2.12.6 GNU notes| The compilers are usually called qcc for C and g++ for C++
and use the -V option for target selection.

Note that these compilers require setting of the environment variables QNX_HOST and QNX_TARGET.
The generator will fail if either is not set correctly because the compiler will then fail to produce
settings.

2.12.8 Clang notes

Since Clang compilers use a GCC-based preprocessor, the generator supports them using its
GNU support. See section [2.12.6 GNU notes|

On Windows, Clang requires Microsoft Visual Studio header files. The generator supports this
with a variant that is based on a Visual Studio CCT.

Clang language options are the same as for GNU. Use option ——target=<value> to specify the
target architecture which uses the same triplet naming convention as GNU. See section [2.12.6

for treatment of system include paths.

2.12.9 HighTec TriCore notes

These compilers are also based on GNU so are supported by the generator using its GNU
support. See section 2.12.6 GNU notes|

Note that the environment needs to be setup so that the compiler license can be accessed.
This typically entails setting environment variable RLM_LICENSE to point to the license server
and adding the location of the license manager to the search path.

2.12.10 Microchip notes

The MPLAB XC32 C/C++ compilers (xc32-gcc and xc32-g++) are based on GNU and
supported by the generator using its GNU support. See section [2.12.6 GNU notes|

They uses the option -mprocessor=<target> to specify the target architecture which also
affects setting of the system include path and inclusion of the appropriate target settings when
using the system headers.

The MPLAB C30 (pic30-gcc) and XC16 (xc16-gcc) compilers are based on GNU and
supported by the generator. Both use the option -mcpu=<target> to specify the target archi-
tecture which also affects setting of the system include path and inclusion of the appropriate
target settings when using the system headers.

11

The latest MPLAB XC8 compiler (xc8-cc) includes Clang, GNU and proprietary front-ends
for different targets and language versions. It is supported by the generator as a GNU variant.
It uses the option -mcpu=<target> to specify the target architecture which will also affects
setting of the system include path and inclusion of the appropriate target settings when using
the system headers. Its precursor (xc8) which is based on the HI-TECH C Compiler is also
supported and uses the option ——CHIP=<target> to select target device.

2.12.11 Texas Instruments Code Composer Studio notes

These compilers typically have a name that starts or ends with c1, for example armcl and
c1430. Also the system include path is usually specified explicitly as a command line option,

e.g.

-I=C:\ti\ccsvb\tools\compiler\arm_5.1.1\include

The generator will pick this up and use it in the CCT generated. Note that no project include
paths should be specified since that will result in messages from those paths being suppressed.

The compiler already is for a specific target architecture so no further options are required for
target selection.

The same compiler supports both C and C++ based on extension of the source file. The
-—cpp option can be used to force C++ compilation.

2.12.12 IAR Embedded Workbench notes

These compilers typically have a name that starts with icc followed by the target identifier,
for example iccarm.

The same compiler supports both C and C++. It has options such as —-c++ to compile C++,
or ——ec++ for Embedded C++ or ——eec++ for Extended Embedded C++.

2.12.13 TASKING notes

The supported C compilers are ctc, carm, cmcs and c166 and C++ compilers cptc, cparm,
cpmcs and cpl66. The options used for target selection are —--cpu=<architecture> and
--core=<core>.

Note that the compiler installations also include control programs (ccte, ccarm, ccmes and
cc166 respectively), which themselves are not compilers but rather utilities that invoke the
corresponding compiler, assembler and linker in the correct order. As such, they are used for
both C and C++ The generator is not supported for these control programs but most control
program options are also compiler options.

12

However, the target selection control program option ——cpu=<cpu> is not a compiler option
but instead converted to macro symbol settings when calling the compiler. For convenience,
the converter treats this option as a compiler option and converts it to compiler options in the
same way as the control program, so that ——cpu=<cpu> can be used in the compiler command
passed to the generator.

2.12.14 Renesas notes

The generator supports the CC compilers (ccrx, ccrh and ccrl) and CA/CX compilers (cx,
ca850, cc78k0 and cc78k0r) shipped with the CubeSuite+ IDE.

The compilers use different options to specify target CPU or chip. In addition, a path may need
to be specified for the target device file location. The binary device file contains definitions
of target features that may be used in the program. The converter translates this device file
to a C header file with the according definitions. This support for device files is only available
in the Windows compiled versions of the generator. Below table shows the options for target
selection and device path specification.

’ compiler \ target option \ device path option
ccrx | —cpu=<cpu> or —isa=<arch> -
ccrh -Xcpu=<core> -
cerl -cpu=<core> -dev=<path>
CcX —-C<device> -Xdev_path=<path>
ca850 —-cpu <device> -devpath=<path>
cc78k0 —-c<device> -y<path>
cc78k0r —-c<device> -y<path>

When using the Build>Build Option List action on a project in the CubeSuite+ IDE, the Build
Tool tab will show the complete compiler invocation including all options. Since there are also

many other options that affect the CCT, it is recommended to use this command to produce
the CCT.

2.12.15 System header paths

The converter uses the same approach for dealing with system header paths for all compiler
hierarchies, which is different from traditional CCT's where this step always occurs during the
generation of the CIP file.

Instead, the generator determines the paths at the time of generation of the CCT and produces
a file named syshdr.1lst in the Stub directory of the CCT. After generating a CCT, verify
that the contents of this file are correct.

The generated CCT will not invoke the compiler to find out the system include paths but

instead directly use the paths found in syshdr.lst. This means that the compiler is no
longer required when using the generated CCT.

13

Since there may be need for using the generated CCT with compilers installed in different
locations, it is possible to specify root paths in syshdr.lst that will be used as root for
following relative paths, e.g.:

:ROOT:

:\workspace\project\tools\gnuc\
.8.2\1lib\gcc\m68k-elf-bes2\4.8.2\include-fixed
.8.2\m68k-elf-bes2\include
.8.2\1ib\gcc\m68k-elf-bes2\4.8.2\include
.8.2\m68k-elf-bes2\include\c++\4.8.2
.8.2\m68k-elf-bes2\include\c++\4.8.2\m68k-elf-bes?2

L S S S @]

When there is a need to use this for a compiler installed in a different location, only the second
line needs to be adjusted.

However, it is also possible to use the generator in a deployment script where it would be in-

voked just before the framework project creation command and the framework project creation
command uses the generated CCT.

2.13 Helix QAC trace log file

This option produces CCT's for compiler commands found in a trace log file produced by Helix
QAC as outlined in section [2.12.1 Obtaining the compiler command|

—qtrace
-qtrace Helix-QAC_20200407T101508_16616.1og
--qactrace qaframework_20200407T103632_3048.1og

To obtain the log file, increase logging level to at least DEBUG using one of:

gqacli log --set-level TRACE
gacli admin --debug-level TRACE

In order to synchronize the build, a Helix QAC project will need to be created for which a
CCT needs to be specified. Choose the closest CCT that is shipped with Helix QAC or the
SyncCCT that is shipped with the generator.

Blacklisting can be used to improve performance. See section [2.15 Blacklisting binaries|

If no log file is specified, the generator will process all log files found in the user data store of
the specified Helix QAC version starting with the most recent log, until a CCT is generated.
This will only work when logs are not stored in the project. To disable project logging to be
local to the project use:

qacli log --project-logging disable

14

When the CCT has been generated it can be used in the Helix QAC project instead of the
initial temporary choice and logging can be set back to the minimum using one of:

qacli log --set-level NONE
gacli admin --debug-level NONE

2.14 Klocwork trace output file

This option produces CCT's for compiler commands found in a Klocwork trace output file
produced by kwinject --trace-out.

-kwtrace kwtrace.log
—--klocworktrace kwtrace.log

Blacklisting can be used to improve performance. See section [2.15 Blacklisting binaries|

2.15 Blacklisting binaries

-bl [level]
--blacklist [levell

If the generator failed to produce a CCT for a binary more times than the specified level, the
binary will be blacklisted and no further attempts will be made to produce a CCT for it. The
default level is one. When the option is not specified, no blacklisting is performed.

3 Troubleshooting

3.1 Generator command line options

Section explains all command line options of the generator. There are no required
options; the generator is able to derive all information from the compiler command. In par-
ticular option —-hierarchy is not required and the generator includes logic for deriving the
hierarchy from the compiler binary name for all supported compiler hierarchies. See section[2.8
|Compiler hierarchyl

Note that compiler hierarchy arm is intended only for the Keil armcc compiler (ARM acquired
Keil Software in 2005), and not for any other compilers for ARM targets from other compiler
vendors. See section [2.12.4 ARMCC notesl The latest ARM compilers are named armclang
and are based on Clang so are supported by the generator using its GNU support. See
section [2.12.8 Clang notes|

15

Other options that are not required are -—version and --outputpath. See section[2.4 Target]
fframework version| and section [2.7 CC1 destination path| for their usage.

3.2 Environment settings

Some compilers depend on certain environment variable settings. All known variables are
mentioned in the applicable subsections of Section [2.12 Compiler command| Please make sure
to read all sections that are relevant for the compiler that you are using the generator on.

3.3 Interpreting console output

The generator produces console output that can be used to investigate issues. It provides
basic output for incorrect use of generator options.

Most console output is produced for compiler invocations. The generator tries to keep console
output to a minimum. By default it will only report non-zero compiler exit codes in case it
didn’t succeed in obtaining the expected information from calling the compiler. The meaning
of these exit codes is completely dependent on the compiler and can be looked up in the
compiler documentation. When generator option --verbose is specified, in these cases also
the complete compiler invocation and both its standard and error output are displayed, which
may help in adjusting the environment or compiler command to solve the error.

Note that for several compiler hierarchies the generator will try multiple option combinations
to obtain the required information and it is normal that some of these combinations will fail.
This does not affect the correctness of the CCT that is generated for the correct option
combination.

When the --build option is used, the generator will attempt to produce a CCT for each
command seen in the build. See section|2.11 Build command| Since most commands typically
are not compiler invocations this will cause a lot of spurious console output that can be ignored.

3.4 Reporting problems

Since the generator supports a wide range of compiler hierarchies that all require specific
attention, there are many different ways in which it can fail. Section [2.12 Compiler command|
provides a lot of compiler specific information that is relevant for the use of the generator.
Please consult the applicable sections in case of problems.

Any remaining questions or problems should be reported at
https://www.perforce.com/support/request-support.

Please always submit the complete command line of the invocation of the generator and the

complete console output of that invocation. In order to ease the investigation and reproduction
of issues, please submit these in plain text instead of a screenshot.

16

	Installation
	Windows platform
	Linux platform

	Usage
	Command line help
	Typical use
	Source language selection
	Target framework version
	Overwrite CCT
	CCT name
	CCT destination path
	Compiler hierarchy
	Verbose console output
	Current working directory
	Build command
	Compiler command
	Obtaining the compiler command
	Cygwin support
	Green Hills notes
	ARMCC notes
	Diab notes
	GNU notes
	QNX notes
	Clang notes
	HighTec TriCore notes
	Microchip notes
	Texas Instruments Code Composer Studio notes
	IAR Embedded Workbench notes
	TASKING notes
	Renesas notes
	System header paths

	Helix QAC trace log file
	Klocwork trace output file
	Blacklisting binaries

	Troubleshooting
	Generator command line options
	Environment settings
	Interpreting console output
	Reporting problems

